Modeling, Control, and Trajectory Optimization by Exploiting Lie Group Symmetry

Maani Ghaffari^{*} Department of Naval Architecture & Marine Engineering Department of Robotics University of Michigan Ann Arbor, MI, USA

Abstract

The kinodynamic motion planning or trajectory optimization is fundamental in robotics. The nonconvexity caused by rigid body systems makes it hard for gradient-based methods to find the globally optimal solution. However, the nonconvexity can be coordinate-dependent and resolved via convex relaxation. I will discuss how we formulate the discrete-time planning problem of the rigid body as a Polynomial Optimization Problem (POP) via Lie group variational integrator. We leverage Lasserre's hierarchy of moment relaxation to obtain the globally optimal solution via Semidefinite Programming (SDP). In addition, I will present recent results on modeling and control of rigid body systems by exploiting symmetry. The goal is to illustrate a picture of current progress for rigid body systems and to motivate the proposed work in this project by contrasting the shortcomings.

In the end, I will conclude with a discussion of how these ideas provide the foundations of the proposed work for modeling and learning for high-dimensional open hybrid dynamical systems.

^{*}Partially supported by the Air Force Office of Scientific Research under the Award No: MURI FA9550-23-1-0400, e-mail: maanigj@umich.edu